Complex Numbers
C={x+y⋅i|x,y∈R} Set of complex numbers
i2=−1
eiΘ=cos(Θ)+i⋅sind(Θ)
Euler’s identity: ei⋅π=−1
Elementary Functions
Exponential function
exp:R→R
We write: exp(x)=ex
-
e0=1
-
∀x,y∈R:ex+y=ex⋅ey
-
∀x,y∈R:ex≠0∧e−x
-
∀x∈R:ex>0
- exp grows monotonous
- exp:R→\]0,∞\[ is bijectiv