Complex Numbers

\(\mathbb{C} = \{x + y \cdot i | x,y \in \mathbb{R}\}\) Set of complex numbers
\(i^2 = -1\)

Euler’s Formula

\(e^{i \Theta} = cos(\Theta) + i \cdot sind(\Theta)\)
Euler’s identity: \(e^{i \cdot \pi} = -1\)

Elementary Functions

Exponential function

\(exp : \mathbb{R} \rightarrow \mathbb{R}\)
We write: \(exp(x) = e^x\)

  1. \[e^0 = 1\]
  2. \[\forall x,y \in \mathbb{R}: e^{x+y} = e^x \cdot e^y\]
  3. \[\forall x,y \in \mathbb{R}: e^x \neq 0 \land e^{-x}\]
  4. \[\forall x \in \mathbb{R}: e^x > 0\]
  5. exp grows monotonous
  6. \(exp: \mathbb{R} \rightarrow \]0,\infty\[\) is bijectiv